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We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) al-
loys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using
the Green-Kubo formulas at temperatures from 1000 K to 4000 K and pressures from 0 GPa to
25 GPa, along with some additional points at higher temperatures and pressures. The diffusivities
are corrected for finite size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity
calculated from the self-diffusivities using a generalization of the Darken equation. We find that
the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed
whether dilute hard sphere and dilute Lennard-Jones models apply to the molten mixture. Neither
of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report gener-
alized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the
MD results well. The MD-derived transport coefficients are in good agreement with the available
experimental data. We also report MD calculations of the viscosity and an analytic fit to those

results. The ionic thermal conductivity is discussed briefly.

PACS numbers: 66.10.cg, 64.75.Ef, 61.20.Ja

I. INTRODUCTION

The mixing of dissimilar fluids is important to a wide
variety of natural and industrial processes. The mixing
of fuel and air in combustion [1], the mixing of hormones
in signaling processes in biological cells [2], and the mix-
ing of pollutants and other particles in the atmosphere
[3] are but a few of the processes of great importance and
under active study. In metallic systems there is interest
in mixing in planetary interiors [4] and alloy processing
[5]. Even the deuterium-tritium mixtures at the condi-
tions for inertial fusion energy are dense metallic fluids
and mixing affects the threshold for ignition [6]. Mixing
generally involves stirring and diffusion. Stirring results
from the advective flow of one fluid into another due to
conservation of momentum and the forces imparted to
the fluids; diffusion is the interpenetration of the fluids
at the atomic level as the system seeks to lower its chem-
ical potential through a random walk of the atoms that
tends to reduce concentration gradients.

In this Article we mainly consider diffusion in molten
aluminum-copper alloys. We use the aluminum-copper
system as an example of transport in molten metal mix-
tures at high temperature and high pressure, examining
how the diffusivity changes with compression, tempera-
ture and concentration. There are several reasons why
diffusion in the molten aluminum-copper system is inter-
esting. It combines the challenges of dense fluids, fluid
mixtures, molten metals and material-specific properties.
While diffusion in dilute gases has been studied exten-
sively and is well understood in many respects [7], the

*Electronic address: robert.rudd@llnl.gov

theory of diffusion in dense fluids is not as advanced; in
particular, the analytic models of diffusion in dense flu-
ids are typically limited to relatively narrow ranges of
thermodynamic conditions such as along the melt curve.
Molten aluminum and copper comprise a dense system
with each atom in constant interaction with its neighbors
through metallic bonds. The properties of the aluminum
and copper atoms in the mixture are not trivial. Alu-
minum and copper have atomic volumes that differ at
ambient pressure, with the volume of aluminum about
50% greater than that of copper. The two are com-
pletely miscible as liquids [8], whereas the solid binary
alloys show a remarkably complex phase diagram due in
part to the volume mismatch. Some of these phases are
very important for industry because copper-rich phases
precipitate and strengthen aluminum alloys. The molten
alloys we study show no tendency to phase segregate or
form molecules. There is a weak but non-negligible chem-
istry as the internal energy for the mixed state is slightly
preferable to the phase separated state, with the mixed
state further promoted by the entropy of mixing. Some
experimental measurements of transport properties have
been made for these metals [9-18]. This combination
of properties makes the molten aluminum-copper system
interesting as an archetype for transport properties in
dense fluids, especially molten metal alloys.

We have used the aluminum-copper system to study
atomic scale effects in hydrodynamic flows [19], such as in
the Kelvin-Helmholtz instability in which ripples grow on
the interface between two fluids flowing past each other
[20]. As the instability enters the non-linear regime, the
ripples transition to well-defined vortices that continue
to grow in size. The billows (commonly known as waves)
that form on the top of water as air blows across it are
a familiar example of a manifestation of such a shear in-



stability. In a shear layer the vortices that form stir the
fluids, moving one fluid into the other through advection.
Diffusion further promotes the mixing. The simulations
of the Kelvin-Helmholtz instability at the atomic scale
using molecular dynamics (MD) were extremely expen-
sive in terms of computational resources. A specific moti-
vation of the work presented here is to construct a model
of the diffusive part of the mixing for use in continuum
fluid instability simulations and analysis of the large MD
simulations.

Diffusivity in fluid mixtures is not well understood ex-
cept in certain limits. In particular, only in these limits
are models available that describe the diffusivity across
a broad range of temperatures and pressures. In the di-
lute gas limit, diffusion involves long ballistic trajecto-
ries with occasional binary collisions. Diffusivities can
be calculated analytically in terms of scattering integrals
using Chapman-Enskog theory. The expressions for self-
diffusivities due to Chapman and Cowling are well known
[7, 21, 22]. In the other extreme, diffusion in solids in-
volves long oscillations in the potential well associated
with one lattice site punctuated by rare events in which
the diffusing species hops to another well before contin-
uing its oscillations there [23]. That process is typically
described by transition state theory [24], and a theory
has been developed that relates the diffusivity to excess
entropy [25, 26]. Dense fluids are between the dilute gas
and solid limits. Diffusion of molecules in the fluid is im-
peded by a cage of surrounding molecules, and there is
a time scale associated with the persistence of that cage
that controls diffusion [27-29].

Diffusion has been studied in experiments involving a
variety of molten metals [30], often over a small range
of temperatures at ambient or near-ambient pressure or
near the solidification curve (liquidus) under pressure.
The use of inelastic scattering to infer dynamic correla-
tion functions, and hence the diffusivity, has proved very
valuable. Hard sphere numerical studies using molecular
dynamics [31] and Monte Carlo [32] approaches have been
used as standard reference systems to infer the equation
of state and transport behavior of fluids under these con-
ditions [30, 33, 34]. Such reference systems have proved
to be very valuable in understanding the fluid behavior
in the relatively narrow range of conditions near the so-
lidification curve. More realistic interatomic potentials
have also been used in MD to study diffusion at low
pressure [35-40]. Mode coupling theory [41] has pro-
vided a sophisticated statistical mechanics framework to
understand diffusivity experiments, and especially glassy
systems. In all of this work there is no theoretical pre-
diction for the diffusivity of dense fluids that has been
tested over a broad range of temperature, pressure and
concentration.

Here we use molecular dynamics [31, 42] with forces de-
rived from classical interatomic potentials to simulate dif-
fusion in homogeneous molten aluminum-copper (AlCu)
alloys. To the best of our knowledge, this work is the
first study to use MD with material-specific interactions

to quantify diffusion processes in dense fluid mixtures
across a broad range of conditions. Prior classical and
quantum MD simulations with material-specific forces
have been used to calculate diffusivities at specific ther-
modynamic conditions [43-45]. The terms classical and
quantum here and throughout the Article refer to how
the forces are computed, either from a classical poten-
tial or from explicitly solving quantum-mechanical equa-
tions for the electrons (in both, the ions typically are
evolved according to classical equations of motion). The
self-diffusivities (tracer diffusivities) and Maxwell-Stefan
diffusivities are calculated using fluctuation-dissipation
relations (Green-Kubo formulas). Here we use that ap-
proach for the molten alloy at various copper fractions.
These calculations concentrate on a range of tempera-
tures from 1000 K to 4000 K and pressures from 0 GPa
to 25 GPa, with some additional calculations at higher
temperatures and pressures. This represents a significant
pressure range and temperatures that are not restricted
to near the solidification curve. The Maxwell-Stefan dif-
fusivities are used to estimate the interdiffusivity (also
termed the Fickian diffusivity and the mutual diffusiv-
ity), which is compared to that predicted by a general-
ization of the Darken equation. Analytic models of the
self-diffusivity and interdiffusivity are constructed. Also,
the viscosity and thermal conductivity are discussed.

II. CONTINUUM FLUID MECHANICS

Species diffusion in response to concentration gradients
is one contribution to how fluids evolve in time. They
also respond to pressure gradients, thermal gradients,
forces and boundaries in a way that respects conserva-
tion of mass, momentum, and energy, and well as con-
serving numbers of atoms (perhaps evolving the species
populations according to the kinetic laws associated with
chemistry and/or nuclear transformations). In the AlCu
system, nuclear transformations and chemical reactions
leading to changes in molecular populations are not im-
portant.

The details of the way in which the full set of equations
of fluid mechanics are formulated determine the diffu-
sion equations and the diffusivity. To show that depen-
dence we consider the equations here. The conservation
laws and dissipative fluxes are described by the Navier-
Stokes Equations for multicomponent fluids. The com-
plete set of these equations is complicated and given in
standard texts (for example, see Bird, Stewart and Light-
foot, Ref. 7, Ch. 19). Here we consider the binary fluid
case, and only write the equations that are relevant to
diffusion. The conservation equations for mass and mo-
mentum and the equation for the species flux (neglecting



body forces other than gravity) are:

- Ve W
P = Yy @)
p%: = -Vp—[V-7]+pg (3)

Jj = —pZ12[Vw+ (kr/T)VT + (ky,/p)VD] (4)

where D f/Dt is the comoving derivative (e.g. Dp/Dt =
Oip + v - Vp). v(x) is the velocity field, p(x) is the den-
sity, g is the gravitational acceleration, w(x) is the mass
fraction of one species (here taken to be copper), %o
is the interdiffusivity (the transport coefficient for Fick-
ian species diffusion), kr is the thermal diffusion ratio,
kp P15 is the barodiffusion coefficient, kr %5 is the ther-
mal diffusion coefficient. The rate of production of mass
of one species due to chemical reactions is r, which we will
take to be zero. The equations are written in the form
suitable for binary mixtures. For higher order mixtures,
the mass fraction, mole fraction, reaction rate, flux and
associated transport coeflicients are species-dependent
and carry an additional index that we have suppressed.
The equation of state is a specified function p(p, T, w).

7;; is the energy-momentum tensor (related to the
stress tensor o;; by 7;; = pv;v; — 045). The other fields
are the internal energy per unit mass, E, the pressure
p=— 10“, and the temperature 7. In Newtoman fluids
the viscous stress tensor is given by

2
U;j =7 (81‘1/5 + (‘3jvi — 35ij6kvk> + C(sijakvk (5)

where 7 is the shear viscosity, and ( is the bulk viscosity.
The full stress tensor is related to the viscous part by
0 = —pdij + o};. A suitable set of boundary and initial
conditions is also needed to fully specify a flow.

We are principally interested in Fick’s Law, which is
implied by Egs. (2) and (4) and corresponds to the case
where there is no density variation, no temperature gra-
dient and no stress:

0 = 0 (wp) + V- (wpv +]) (6)
j = *ﬁ.@lg Vw (7)

For some generality, we have retained the velocity v.

III. TRANSPORT COEFFICIENTS

A. Self-diffusivity, viscosity and thermal
conductivity

There are three transport coefficients of fluids that
have been studied extensively and may be formulated
as the integral of certain time autocorrelation functions
suitable for calculation in molecular dynamics (MD) us-
ing the Green-Kubo formalism [34, 45-47]: the self-
diffusivity D;, the shear viscosity 7, and the thermal

conductivity, A. The Green-Kubo formulas for these co-
efficients involve integrals over autocorrelation functions
[cf. McQuarrie [46], §21-8]:

D; = /000 dt (2;(0) @;(¢)) (8)
1=t [T a0
v = [Caoso ) (o)

where the index i labels the species. By self-diffusivity
we mean the diffusivity for species 7 in the mixture; we do
not imply that the fluid is pure species i. The autocor-
relation function that enters the expression for the self-
diffusivity D; only depends on the velocities of species
i. Here we are following the usual convention, but we
emphasize the point because the terminology can lead
to some confusion. Vi is the total volume of the simu-
lation, kg is the Boltzmann constant, T' is the absolute
temperature, #(t) is the velocity in the z direction, o;;(t)
is the (virial) stress and J(t) is the energy current:

Tij = ‘/tt Zmﬂxﬂlxﬂi+letul wj | (11)
¢ (uv)
JP = — T (e, — (h
T | 2 i (e = (1)
o
Ty + Ty
+lewi (/2) “Fu (12)
(uv)
1 .2
u = 5y |, + U, (13)

()

(;;Ze#> +pV (14)

where p and v label atoms and the sums over (ur) sum
distinct pairs of atoms. The relative separation is x,,; =
Zyi—Tyi- My, is the mass of atom p and U, is its potential
energy. In practice these formulas converge more rapidly
if averaged over the different independent components of
velocity, stress and current.

The Green-Kubo formula for self-diffusivity (8) in-
volves an integral over the velocity autocorrelation func-
tion

Z(1) = (0)i(0) (15)
= L&) %(0) (16)

This autocorrelation depends on the species i, as well
as the pressure, temperature and copper fraction. The
autocorrelation function starts with a value of Z;(0) =
kgT/m; and decreases to zero as time progresses, perhaps
with some oscillations. The Green-Kubo expression for



the self-diffusivity in a homogeneous system is equivalent
to the definition:

lim = (i (t) — xi(0)%), (17)

The Green-Kubo expression can be recovered by replac-
ing x in this expression with the time integral of the
velocity (cf. Ref. 34, Section 7.2).

B. Interdiffusion

The interdiffusivity is also of interest, and it requires a
different Kubo formula. Interdiffusion is the process de-
scribed by Fick’s equation (2). It moves one species with
respect to the others. For example, it controls the rate
of broadening of the interface between regions of differ-
ent concentration. As such, it can be calculated directly
with non-equilibrium molecular dynamics. We return to
this point below. It can also be calculated using lin-
ear response theory and fluctuation-dissipation relations,
similar to how the self-diffusivity is calculated.

The interdiffusion current involves the relative trans-
port of mass. In a binary system the mass flow of one
component relative to the other is given by (cf. Refs.
[7, 34]):

i = p1vi—pava (18)
= p1p2 (Vi —Vv2) /p+ (p1 — p2) v (19)
= wiwa p (Vi — va) (20)

where p; and v; are the mass density and the center-of-
mass velocity of species i. The third expression is valid in
the center-of-mass frame (v = 0). Often the interdiffu-
sivity is written as a number flux instead of the mass flux
given here, and in that case the flux is the same up to a
mass-dependent constant [34]: X;Xan (v — va) where
n is the number density.

The relation between interdiffusivity and self-
diffusivity may be presented in terms of Maxwell-Stefan
diffusivity. For a binary mixture, the Maxwell-Stefan
equations take the form [7]:

X1 X5 (v1 —va) _ Xy
Do kT

Vi (21)

where v; is the mean velocity of species ¢ and p; is the
chemical potential of species i. P15 is the Maxwell-Stefan
diffusivity, which is related to, but not equal to, the in-
terdiffusivity. Rearranging Eq. (21), reexpressing the ve-
locity difference in terms of the mass flux, and using the
chain rule for the gradient we have

. mimeo X1 (9,u1
¢ = VX 22
J X1m1 +X2m2 kBT8X1 ! ( )
X5 0
= pPr—= K1 Y w1 (23)

kT X,

where m; denotes the species mass. Comparison of this
equation with the continuum fluid equations (7) shows
the interdiffusivity to be:

Dy = Dppd (24)
X1 O

b = ——— 25

kT 0X1 (25)

Here @ is called the thermodynamic factor [45]. It can

be expressed in terms of the activity as

dlog f1

b =14+~ 26

* dlog X, (26)

where f; is the activity coefficient of species ¢ [51]. The
activity vanishes for ideal fluid mixtures, so the thermo-
dynamic factor is equal to unity in that case.

The expression for the Maxwell-Stefan binary diffu-
sivity may be derived from linear response theory, and it
involves the autocorrelation function of the interdiffusion

current (18): Pp oc [ dt (§°(0) - j°(t)) [48-50]:

Pry — /O dt Znss (1) (27)
Zus(t) = 2 w1 (0) va(0)) - e (1) — V(o))

where N is the total number of atoms.

C. Relating Self-Diffusion to Interdiffusion

The Maxwell-Stefan diffusivity contains cross-
correlation contributions that are not contained in the
self-diffusivity. It is interesting to consider whether
those cross-correlation terms are important. There is
an approximate expression for the interdiffusivity in
terms of the self-diffusivities that was developed for
diffusion in solid metals by Darken [51-54]. It is an
approximate relation, but it often works well in practice
[55]. The high temperature molten metals studied here
are expected to be described well by this approximate
relation.

A derivation of the expression [48] starts with the
Maxwell-Stefan diffusivity (27) and then eliminates cross-
correlations:

Dy = X1X2N/ dt ([v1(0) — v2(0)] - [V1(t) — va(®))

B X1X2N/

i€l je2
LS k)~ — S 5a0)) (29)
| == X - — X
N - m Ny "
i€Em ne2
1
~ X1 XoN D D 30
1X2 (Nl 1+N 2) (30)
= XoD1+ X1D> (31)



where in going from (29) to (30) it was assumed that
the cross-correlations vanish: (%;(0) - %x;(¢)) = 0 unless
1 = j. This equation relates the Maxwell-Stefan diffu-
sivity P12 to the self-diffusivities D;. It is a form of the
Darken equation [51]. All of these transport coefficients
are evaluated at the relevant conditions: D15 (7, p,w) and
D;(T, p,w). For AlCu interdiffusivity the Darken relation
is then

D1y = [(1 — X)D¢y + XDAl] (0] (32)

where X is the copper mole fraction.

However, since the diffusion is taking place in the cen-
ter of mass frame, the motion of different atoms is not
strictly uncorrelated, even if one assumes that the mo-
tions of neighboring atoms are otherwise uncorrelated.
This correlation causes some ambiguity in the derivation
of the Darken relation (31). In the center-of-mass frame,
the species velocities that enter the autocorrelation func-
tion for the Maxwell-Stefan diffusivity satisfy

V(t) = W1V1 (t) + WQVQ(t) =0 (33)
so that
vi(t) — va(t) = wizvl(t). (34)

This expression is exact in the center-of-mass frame. Us-
ing this relation, the Maxwell-Stefan diffusivity may be
reexpressed as

D12 = )irléfgjv/oroodt <V1(0) V1(t)> (35)

Xo
—D 36
w% 1 ( )

Q

The expression (35) is exactly equal to Eq. (27), but the
expression that results when the cross-correlations are
neglected (36) can be quite different than the Darken
expression (31). Similar manipulations keeping vy rather
than v, leads to the approximation

Py ~ (X1 /w?)Ds. (37)

For two unequal species masses, the approximations (31),
(36) and (37) for P12 can be significantly different.

This reductio ad absurdum leads us to consider the
derivation of a similar expression starting with the dif-
fusion equation and imposing the center-of-mass con-
straint. The mass currents neglecting cross-correlations
are given by the following expressions in a frame moving
with velocity v with respect to the rest frame in which
the self-diffusivities are calculated:

ji = —pD1®Vw + wpv (38)
5 —pDa®V(1 —w) + (1 —w)pv (39)

where the prime is used to distinguish the individual mass
currents from the total diffusive current. These equations

are similar to Darken’s starting point for analyzing diffu-
sion in solids [51]. By neglecting the cross-correlations,
the mass currents no longer balance, and a new center-of-
mass frame must be found. The condition that the total
mass flux vanish in the center-of-mass frame is given by

0 = ji+i5 (40)
= —p (D1 — D3)®Vw + pv (41)

and thus
vV = (D1 - Dg) PVw. (42)

Substituting this expression for the background veloc-
ity into Eq. (38), we find the current

j = —p [D]_ —Ww (Dl — DQ)] P Vw (43)
From this equation we read off the interdiffusivity:
D12 = [(1—w)Dy +wDy] P (44)

where for AlCu mixtures Dy = D¢y, Dy = Da; and w
is the copper mass fraction. This expression is similar
to the standard Darken relation (31), except that the
self-diffusivities are weighted by the mass fraction rather
than the mole fraction. We consider this expression be-
low, and compare the Maxwell-Stefan diffusivity to both
it and the mole-fraction-weighted (conventional) Darken
relation. The change in using mass fraction weighting
from mole fraction weighting can be estimated as

1 Am AD
AD/Dw ;—=—% (45)
where Am = mgo — mp and AD = Dy — D; and m and
D are the corresponding averages. For the AlICu system
this change turns out to be < 2%, so the differences are
not very important. We make a quantitative comparison
below.

IV. MOLECULAR DYNAMICS

We now turn to the calculation of the diffusivity as
a function of copper fraction, pressure and temperature.
For this purpose we have conducted molecular dynam-
ics (MD) simulations of molten aluminum-copper (AlCu)
mixtures. The simulations are in the following range of
conditions: copper mole fraction X=0-1, pressure p=0—
25 GPa, and temperature T=1000-4000 K, and some
additional simulations at higher temperatures and pres-
sures. MD simulates the motion of atoms interacting by
forces derived from an interatomic potential. We used
the FEMD code [56-58] with the Mason-Rudd-Sutton
interatomic potential for AlCu alloys [59] which is in the
Finnis-Sinclair family of potentials [60]. This AlCu po-
tential has also been used to study diffusion in solid A1Cu
alloys [59, 61, 62], and details of how the potential was
constructed are in those publications. The potentials,



like other Finnis-Sinclair and Embedded Atom Method
potentials, are many-body potentials, so the force experi-
enced by an atom depends on the density due to the clus-
ter of neighboring atoms and cannot be factorized into
pairwise interactions. In this formulation properties of
the solid including densities, cohesive energies and elastic
constants agree with the experimental data (within the
error bars on those data). This level of agreement with
experiment is not possible with pair potentials (pairwise
interactions).

The atoms move according to Newton’s Third Law
(F=ma), with the set of 3N coupled ordinary differential
equations integrated explicitly in time using a velocity
Verlet time integrator with a time step of 2 fs, reduced
to 0.5 fs for simulations with 7" > 20000 K. The atomic
configuration for the self-diffusivity and viscosity calcu-
lations consisted of N=4000 atoms, generated from a
well equilibrated molten Al system with a fraction of the
atoms changed at random to Cu to obtain the required
mole fraction, scaling the velocity so that the kinetic en-
ergy remained the same despite the change in mass. The
center-of-mass velocity was zero. The interdiffusivity cal-
culations were done for a subset of the thermodynamic
conditions with N=256000 atoms for ten million time
steps (~ 20 ns), and the self-diffusivities and viscosities
were calculated for these runs as well, to confirm the size
scaling formulas described below. This procedure for cre-
ating the initial configuration starts with a liquid that
is homogeneous at the microscopic level (up to statis-
tical fluctuations), and thus avoids the persistent micro-
heterogeneity that has been observed in some molten alu-
minum alloys produced by melting weakly order solid al-
loys and not subjected to a critical overheating beyond
the liquidus [63]. The system was then re-equilibrated
over ~ 10 ps with a thermostat (velocity renormalization)
to obtain the desired temperature and scaling the simu-
lation box volume to obtain the desired pressure (calcu-
lated with the virial stress formula (11)). The size of the
cubic simulation box was 3.6 to 4.8 nm on a side for the
4000 atom simulations (up to 16 nm for the 256000 atom
simulations), depending on the thermodynamic condi-
tions with a small number of larger simulations up to
16 nm on a side. Periodic boundary conditions were
used. Following the initial gross equilibration, the sys-
tem was further equilibrated at constant volume with
a weak thermostat (velocity renormalization every 100
time steps) for 100 ps. Simulations were conducted at 165
combinations of mole fractions and thermodynamic con-
ditions: X = 0.0,0.1,...,1.0, T = 1000, 2000, 3000 K,
and p = 0,2,4,10,25 GPa. A few additional simulations
were run in pure Al and pure Cu at 7' > 4000 K.

Once the system was equilibrated, the simulation was
run for an additional 6.4 ns, calculating the velocity auto-
correlation function on the fly. Each 4000-atom run took
about 10 hours on 8 CPU’s on the Zeus supercomputer
at Lawrence Livermore [64], and we conducted a total
of 383 such runs, with more than one run at each set of
conditions in order to improve statistics. Each 256000-

atom run took about 16 hours on 64 CPU’s on the Atlas
supercomputer at Lawrence Livermore [64] for a simu-
lated time of 1 ns. For each atom the initial velocity was
saved. The autocorrelation function was calculated as
the simulation progressed:

Zz(t) = 7ﬁ Xa (0) : Xa (t) (46)

where ¢ indicates the type of atom (Al or Cu) and N; is
the number of that type. The simulation was run on a
parallel supercomputer, so the initial velocity was part
of the information that had to be communicated if the
atom moved from the spatial domain associated with one
processor to that associated with another. Since the ve-
locity is used rather than the position, no special book-
keeping is required if an atom diffuses around the peri-
odic boundaries. The correlation function was saved as
a table with an entry per time step. After a sufficiently
long period (10 ps), the autocorrelation function was zero
apart from statistical noise, so a new initial velocity was
saved and additional contributions to the autocorrelation
function were calculated, further reducing the statistical
noise. This approach is similar to earlier calculations of
self-diffusivities in MD (cf. Ref. 65).

The self-diffusivity was then calculated as an integral
(sum) over the velocity autocorrelation function by post-
processing;:

Di:L/ it Zi(t)
0

2 [Z ai At Z;(ty)
k

where the coefficients aj, give the Simpson’s rule approxi-
mation to the integral. The integral/sum was terminated
to account for a power-law t~“ decay in the correlation
function following Bastea [44]. In particular, the long-
time tail contribution was included through the final term
in Eq. (47). It is well known that velocity autocorrelation
functions exhibit long-time tails [66], where the exponent
derived for hard spheres in three dimensions is o = 3/2.
In practice for our simulations at these elevated temper-
atures the long-time tail contribution was small (6% or
less). The tails are discussed more in Section IV A.

In principle the integral for the Maxwell-Stefan diffu-
sivity should be terminated similarly to account for the
long-time tail of its kernel. In practice, the correlation
function Zys is not converged as well as Za; and Zgy,
and noise in the tail leads to noticeable noise in P15. We
find that in practice a more rapidly convergent expression
for D12 is

tmax
T Zi(tmax)  (47)

tIIl X
by = + a% Zp (tmax) (48)

1

[Z ar At Zys (tr)
k

where Zp(t) is a correlation function suggested by the
Darken relation that is discussed below (54).



As the size of the simulation box approaches the
inter-atom separation, there are corrections to the self-
diffusivity since the hydrodynamic flow of the atoms
needed to accommodate the diffusion is impeded. The
formula for this correction for a cubic periodic box with
edges of length L is [67]

D; = Dppc + gPBC kBT/(GTl"I?L) (49)

where {ppc = 2.837297. This formula gives the cor-
rection that must be added to the self-diffusivity calcu-
lated in a finite system with periodic boundary conditions
Dppc to get the actual self-diffusivity D;. A more ap-
proximate version of the formula results from use of the
Stokes-Einstein relation [34]

p,— T (50)

;=
2TNT gmax

(slip boundary conditions) where rgmax is the typical in-
teratomic separation. This value may be taken to be
the location of the first peak in the radial distribution
function. Substituting it into Eq. (49), the relation be-
comes D; = Dppc/(1l — Yrgmax/L) where v = €ppc/3 =
0.9457657. Since the Stokes-Einstein relation is not exact
[68], the formula may be further approximated by taking
v~ 1:

Di ~ DPBC/(l — rgmax/L) (51)

which is good for quick estimates of the finite-size cor-
rection. For the AlCu system, the constant in the de-
nominator of the Stokes-Einstein relation (50) is about
2.1 rather than 2, but that is a small correction to a
small correction, and Eq. (51) is a good approximation
for many purposes. We have verified the finite size cor-
rection formula (49) by comparing the results of the 4000
atom and 256000 atom simulations.

It should be noted that we are taking an approach
based on classical MD using an available AlCu inter-
atomic potential. Quantum molecular dynamics could
be used to verify the accuracy of the classical poten-
tial, or even to calculate a few diffusivities directly. It
is beyond the capabilities of existing computers to re-
peat these calculations exactly with quantum MD, but it
might be possible in the future.

A. MD Self-Diffusivity Results

We have used MD to calculate the velocity autocor-
relation functions and self-diffusivities across a broad
range of conditions. Velocity autocorrelation functions
are shown in Figs. 1 and 2 for aluminum. Figure 1
shows the autocorrelation function Za(t) at various vol-
umes per atom () at T = 2000 K (solid curves) and
T = 20000 K (dashed curves). The curves at the lower
temperature and the lower volumes show more struc-
ture (oscillations) due to correlated motion in the cage
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FIG. 1: (Color online) The velocity autocorrelation function
for pure Al at the temperatures 2000 K (solid curves) and
20000 K (dashed curves). The curves correspond to the fol-
lowing volumes and pressures: 14 A, 29 GPa (87 GPa); 16
A%, 14 GPa (60 GPa); 18 A® 58 GPa (44 GPa); 20 A3
1.4 GPa (33 GPa); and 21 A3 0.12 GPa (29 GPa). The
pressures at T = 20000 K are in parentheses. At the higher
temperature much of the structure visible in the autocorre-
lation functions at 2000 K has disappeared except at 14 A3,
The autocorrelation function was calculated out to a time of
1 ps (not shown).

of neighbors. That structure is absent from the curves
for the 20000 K simulations at volumes of 18 A3 per
atom and greater for aluminum. Figure 2 shows Zxi(t)
at Q = 18A3 for a range of temperatures from 2000 K
to 10000 K. Again the structure at lower temperatures
is absent at the higher temperatures, with no minimum
in the correlation function at ¢t < 0.1 ps for temperatures
above ~10000 K. The autocorrelation functions are well
converged. The statistical error in the self-diffusivity is
less than 0.1% as determined from the standard devia-
tion of the self-diffusivity calculated from subsets of the
data compared to the reported value. The long-time tails
are visible in the plot in Fig. 3, even at the elevated tem-
perature of 20000 K. The tails are stronger at lower tem-
perature, but the structure in the correlation function
persists to later times so the scaling is less clear. For
our simulations, we find the power-law scaling ¢t~ varies
from the hard-sphere exponent of & = 3/2 up to o ~ 2
at higher pressures, and the expression for the diffusivity
is terminated accordingly.

The full set of self-diffusivities is shown in Figs. 4 and
5. The first figure shows the self-diffusivities at zero pres-
sure as a function of the copper fraction. The values fall
in bands increasing with temperature at 1000 K, 2000 K
and 3000 K (and one result at 4000 K). The second fig-
ure shows the self-diffusivities at 3000 K as a function of
the copper fraction. In this case the bands correspond
to different pressures, with the self-diffusivity decrease
with increasing pressure at 0, 2, 4, 10 and 25 GPa. All
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FIG. 2: (Color online) The velocity autocorrelation func-
tion for pure Al at various temperatures on the 18 A? iso-
chore. The curves correspond to the following temperatures
and pressures: 2000 K, 5.8 GPa; 5000 K, 14 GPa; 10000 K,
26 GPa; 20000 K, 44 GPa; 50000 K, 87 GPa; and 100000 K,
150 GPa. The initial point of the curve Za;(0) increases lin-
early with the temperature. The autocorrelation function was
calculated out to a time of 1 ps (not shown).
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FIG. 3: (Color online) The diffusivity for pure Cu at the
temperature 20000 K. The dashed line goes like ¢73/2, for
comparison to show to what extent the long-time tails have
that power-law dependence.

of the self-diffusivities are in the molten alloys; some of
the 1000 K results are in super-cooled conditions. These
calculations do not have concentration gradients apart
from local fluctuations, so the numbers represent tracer
diffusivities. They do not include activity contributions.

In a few cases the tracer diffusivities of the pure metals
have been measured at the melting temperature. For cop-
per, the self-diffusivity was found to be 3.97 x 1078 m? /s
in Ref. [9, 11]; our value of 3.32x 10~% m?/s is about 16%
lower than the experimental value. This is good agree-

6x10° ‘
« 3000K « Dy
L . . s Dol |
— . : . 4000 K 4
Z 4x10°F L. 7
é A o
b A ° .
= I . 2000K L e ]
= 8| . : _
0O 2x10 2 .
A °
A 2 2
| 1000 K 2 1
2 'y .
2 2
0 \ \ 1 : ! n
0 0.2 0.4 0.6 0.8 1
Copper Mole Fraction

FIG. 4: (Color online) Self-diffusivity of Al and Cu in AlCu
molten mixtures at ambient pressure and several tempera-
tures: 1000 K, 2000 K and 3000 K (lower, middle and upper
bands, respectively) as calculated by the Green-Kubo formula
(8). One point at 4000 K is also shown.
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FIG. 5: (Color online) Self-diffusivity of Al and Cu in AlCu
molten mixtures at a temperature of 3000 K and pressures
ranging from 0 to 25 GPa. as calculated by the Green-Kubo
formula (8). The diffusivity decreases with increasing pres-
sure.

ment, especially since we have not tuned the interatomic
potential to the properties of the molten metal. We are
not aware of any high-pressure diffusivity experiments
for copper or any diffusivity experiments for aluminum.
For Al there are some theoretical works to which we can
compare. Our Al self-diffusivity value at a temperature
of 1000 K, 8.89x 1078 m? /s, is 3% lower than the value of
9.2 x 1078 m? /s reported in Ref. [69] at a temperature of
1025 K, is 31% higher than the value of 6.8 x 1078 m? /s
reported in Ref. [37] at a temperature of 1000 K and ex-
perimental density, and is 71% higher than the value of
5.19x 1078 m? /s reported in Ref. [40] at a temperature of
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FIG. 6: (Color online) Self-diffusivity of Al in pure molten
Al as a function of pressure at temperatures of 2000 K (dia-
monds) and 20000 K (squares). These diffusivity values have
been calculated from the autocorrelation functions shown in
Fig. 1 using the Green-Kubo formula (8). The points corre-
spond to volumes per atom of 14, 15, ..., 21 A3

973 K. Our result at 1000 K is in reasonable agreement
with the other theoretical results, with an admittedly
large scatter.

The general trend is for the self-diffusivities to in-
crease with temperature and to decrease with pressure
as expected. The diffusivities are higher for the more
aluminum-rich alloys, increasing convexly upward as the
aluminum content is increased. The number density of
the aluminum is lower than that of copper at a given
pressure, as seen already in the zero temperature lat-
tice constants (acy = 3.61A vs. ap = 4.05A). So the
diffusivities are higher in the material with the lower
number density, as is reasonable. Similarly, the Al self-
diffusivities in all of the alloys are higher than the cor-
responding Cu self-diffusivities. The self-diffusivities of
the different species do not converge at the end points
(X =0 and X = 1), so in the dilute limits the impurity
diffusion is not fully coupled to the majority particles.
In mixed systems, the self-diffusivities are not just linear
interpolation in either mass fraction or mole fraction of
the values at the end points, and furthermore the curva-
ture is asymmetric. These properties affect the form of
the fitting functions we use below.

B. MD PBC Correction Results

We have also calculated the radial distribution func-
tion g(r) needed to determine the correction due to finite
size effects for a simulation box with periodic boundary
conditions (PBC). The radial distribution function was
calculated at 1 ps intervals during a total simulation time
of 2 ns for pure Al and pure Cu at pressures of 0, 2, 4,

| Cu

1.5

q(n

0.5 -

r (&)

FIG. 7: (Color online) The radial distribution function g(r)
for Cu at a temperature of 3000 K, as calculated by MD.

10 and 25 GPa and temperatures of 2000 K and 3000 K.
The results for Cu at 3000 K are shown in Fig. 7 with no
smoothing. The results Al and for both at 2000 K follow
the same trends.

The first peak in the radial distribution function g(r)
was used to calculate the nearest neighbor separation a
needed for the finite-size correction (51). The results
are shown in Table I. One interesting feature is that
the value of a decreases as the temperature is increased
from 2000 K to 3000 K, even though the overall box size
increases due to thermal expansion. The value of a at the
peak decreases even though the mid-point of the peak
increases due to the anharmonicity of the interatomic
forces. Using the values of a in Table I, we find that
the corrections to the self-diffusivity cause an increase
by a small amount, ~6%, as shown in Fig. 8 for 4000
atoms. The correction is less than 2% for the 256000
atom calculations. This correction is small and may be
neglected for many purposes. We will not use it to modify
the self-diffusivity values that are reported. However, in
some cases it may be useful to account for this correction.
For 4000 atoms, the expression

D;/DFBC =1 4dy — dy Q(T/Tp)? (52)

describes the correction to an accuracy of 0.2% for pres-
sures from 0 to 25 GPa with the parameters d;(Al) =
0.075, di(Cu) = 0.078, do(Al) = 6.31 x 1074A3,
dy(Cu) = 9.92 x 1074A-3, B(Al) = 1/4, 3(Cu) = 1/6,
and T is a reference temperature taken to be 2000 K.
(1 is the atomic volume in A3, For N # 4000, the co-
efficients d; are scaled by (N/4000)~'/2. The tildes are
used on the coefficients here to distinguish them from
other coefficients discussed later in the paper. We have
not calculated the correction for AlICu mixtures, and the
hydrodynamic correction formula (49) may not apply to
mixtures, but since the correction is small, linear interpo-
lation by mole fraction should be a good approximation.



TABLE I: Nearest neighbor separation calculated from the
first peak in the radial distribution function g(r).

Pressure |a1(2000 K)[aa1(3000 K) |ac.(2000 K) [ac. (3000 K)

0 GPa | 2.690 A 2.661 A 2.450 A 2.433 A
2GPa | 2.669 A 2.642 A 2.441 A 2.423 A
4GPa | 2650 A 2.629 A 2.432 A 2.414 A
10 GPa | 2.604 A 2.583 A 2.407 A 2.391 A
25 GPa | 2.524 A 2.504 A 2.359 A 2.345 A
1.07,
1.06}- .
- [+ A:2000K, Eq. (51 TUeSRi
1.05- Al: 2000 K, Eq. (51 4000 atoms ~
I | « Cu:2000K, Eq. (51) 1
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FIG. 8: (Color online) The multiplicative correction due to
finite size effects with periodic boundary conditions as a func-
tion of atomic volume, 2. The points are the correction ob-
tained from Eq. (51) using the values for the nearest neighbor
separation a given in Table I. The curves are the fits from
Eq. (52).

C. MD Maxwell-Stefan Diffusivity Results

We have also used MD to calculate the center-of-mass
velocity autocorrelation functions and Maxwell-Stefan
diffusivities across a broad range of conditions. The
center-of-mass velocity autocorrelation function for the
Maxwell-Stefan diffusivity converges much more slowly
than the velocity autocorrelation function for the self-
diffusivities. There is only one center-of-mass mode for
each species, whereas there are many atoms. This leads
to much better statistics for the self-diffusivities. In a
typical calculation the error for the self-diffusivities is
less than 0.1%, whereas for the Maxwell-Stefan diffusiv-
ity it is 3-6%. Longer runs were used to converge the
results presented in this section (256000 atom simula-
tions for 16 ns), bringing the error down to ~ 1% or less.
Examples of the center-of-mass velocity autocorrelation
function Zys(t) with mole fraction X = 0.5 are shown
in Fig. 9. The corresponding atomic velocity autocorre-
lation functions Z;(t) are also shown. These examples
were chosen to show the differences between the corre-
lations functions at low temperature and high pressure,
shown here at T' = 2000 K and p = 25 GPa, and those
at higher temperatures and lower pressures, shown here
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FIG. 9: (Color online) The velocity autocorrelation functions
for X=0.5 AlCu at p = 25 GPa and T' = 2000 K (solid curves)
and p = 0 GPa and T = 3000 K (dashed curves). The y-axis
has been offset to separate the two sets of curves, with the
arrows indicating which vertical axis goes with which curves:
2000 K on the left and 3000 K on the right. The correlations
functions for the Maxwell-Stefan diffusivity Zms(t) (28) and
the self-diffusivities Za1(t) and Zcu(¢) (16) are shown for com-
parison. The autocorrelation functions were calculated out to
a time of 1 ps (not shown).

at T = 3000 K and p = 0 GPa. As the temperature in-
creases or the pressure decreases to move away from the
melt curve, the structure becomes less pronounced. The
first minimum in the curve disappears. Since the start-
ing value Z;(0) is proportional to the temperature, the
initial peak is higher at higher temperatures. The width
in time of the initial peak increases as the temperature
increases or the pressure decreases. These trends apply
to Zms(t) as well as the atomic velocity autocorrelation
functions. The shape and structure of Zys(t) tends to be
intermediate between Za)(t) and Zcy(t), although there
are some differences, as has been observed in previous
studies [49]. At the point at which the Z4;(¢) and Zcy (%)
curves cross, Zys(t) is close, albeit not equal, in value.
As the concentration is varied, the Maxwell-Stefan ker-
nel Zys(t) varies from nearly equal to Zcy (t) for Al-rich
mixtures (low X) to nearly equal to Za)(t) in Cu-rich
mixtures (high X), as shown in Fig. 10. This variation is
in agreement with the guidance from the Darken equa-
tion (31), which would suggest the following relation:

ZMs(t) ~ ZD(t)
Zn(t) = (1—X) Zeu(t) + X Zai(t)

The error in this approximation, quantified as | Zygs(t) —
Zn(t)]|/Zms(0), is found to be less than 3% at all times
for AlCu at the conditions studied here. This error
measure does not guarantee anything about how well
the Maxwell-Stefan diffusivity is approximated by the
Darken relation, and we find below that the agreement
is somewhat worse than this.

A comparison of the Maxwell-Stefan diffusivity i

(53)
(54)
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FIG. 10: (Color online) The velocity autocorrelation func-
tions for AlCu mixtures at a pressure of 0 GPa and the
temperatures 3000 K. The mole fractions range from 0.1 to
0.9, as indicated in the 5 panels. The correlations functions
for the Maxwell-Stefan diffusivity Zms(t) (28) and the self-
diffusivities Za1(t) and Zcy(t) (16) are shown for comparison.
As the concentration is changed, Zms(t) varies from nearly
equal to Zcu(t) at X = 0.1 to nearly equal to Zai(t) at X=0.9.
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FIG. 11: (Color online) Diffusivity plotted as a function of
pressure. The diffusivities plotted are the Maxwell-Stefan dif-
fusivity P12 and the corresponding diffusivities derived from
the Darken relations based on mole fraction weighting (31)
and mass fraction weighting (44) of the self-diffusivities. The
plotted values are for X = 0.5 and the temperatures indi-
cated: 2000 K and 3000 K. The inset shows the 3000 K curves
at low pressure where the mole fraction weighting gives a sig-
nificantly better approximation to Pi2.

and the corresponding diffusivities derived from the
Darken relations based on mole fraction weighting (31)
and mass fraction weighting (44) of the self-diffusivities
is shown in Fig. 11. Both the Darken expressions over-
estimate D15 by 1-15%, so by this measure the cross-
correlations reduce P15. In the majority of cases there
is little difference between the mole fraction weighting
and the mass fraction weighting; i.e., the magnitude of
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the cross-correlation effect considerably exceeds the dif-
ference between mass- and mole-fraction weighting. In
those cases where there is a difference, the mass fraction
weighting gives a result that is closer to D12 (such as at
p=0and T = 3000 K).

V. ANALYTIC DIFFUSIVITIES

We next convert the results of the self-diffusivity cal-
culations into an analytic form suitable for continuum
Navier-Stokes simulations. In the process, we compare
with functional forms presented in the literature. The
question of how the diffusivity changes with pressure has
been addressed in the context of gases [21] and solids
[70], but there has been little work on high pressure
molten metals. We will consider whether existing forms
continue to apply in this different regime. In particu-
lar we consider a form that arises in the dilute gas limit
from Chapman-Enskog theory [21] and a form that arises
from the analysis of dense hard sphere systems mechan-
ics [46]. We also give an empirical fit motivated by the
hard sphere model.

A. Dilute Gas

We first assess whether the formula for diffusivity for
dilute gases due to Chapman and Cowling [21] provides a
good description of the MD-based values. Diffusion in di-
lute binary gas mixtures has been studied extensively [7],
with the general trend that the self-diffusivity decreases
with increasing pressure and increases with increasing
temperature. It is not a strong function of the composi-
tion. The molten AlCu system we study is in the dense
fluid regime. The atoms interact via a short-ranged po-
tential, but even at the lowest densities studied here there
are over a dozen atoms within the interaction cutoff. As
a result, the atoms are in constant interaction with their
neighbors, and the diffusive process is very different than
ballistic trajectories with occasional binary collisions. It
may be expected that the dilute-gas formula will disagree
with the MD results for the molten AICu mixtures, but
the magnitude of the difference is not known a priori.
The agreement may be good enough. For this reason, we
first consider dilute gas models.

We consider the expressions for the diffusivity of a di-
lute gas for two cases: hard sphere and Lennard-Jones
atoms. We focus on pure aluminum for the initial assess-
ment of whether this approach is sufficiently accurate.
The self-diffusivity (tracer diffusivity) of a dilute gas of
hard spheres is given by [7]

Vvm k‘BT

Dpp =
Aa- =0 Py

dilute hard sphere (55)

where d is the hard sphere diameter and m is the mass.
The prefactor is given by 3 = 2/(37%/2). Here we have
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FIG. 12: (Color online) Self-diffusivity (tracer diffusivity) of
Al pure molten Al at four temperatures: 1000 K, 2000 K,
3000 K and 4000 K. The points are values as calculated with
MD using the Green-Kubo formula (8). The lines are fit us-
ing the dilute hard sphere formula (55) with d = 2.4A. The
dilute hard sphere model does not provide a highly accurate
description of the diffusivity.

made use of the ideal gas law to eliminate the pressure. If
instead a dilute gas of Lennard-Jones atoms is considered,
the self-diffusivity (tracer diffusivity) is

vm kBT

Daa =B—55——
po*Qp aa-

dilute Lennard—Jones (56)

where o is the Lennard-Jones radius (a species-dependent
constant) and p a4+ is the scattering integral (a func-
tion of temperature and species). The prefactor is given
by 8 = 3/(8y/m). The temperature dependence of
Qp,aa- gives the Lennard-Jones self-diffusivity an over-
all scaling of Dgq~ o< T? at low temperatures and
D g« oc TH%5 at high temperatures [7].

These forms do not provide a good description of
the MD diffusivities. The dilute hard sphere result for
pure Al is shown in Fig. 12 with a hard sphere diame-
ter of 2.4A. The temperature dependence of the dilute
Lennard-Jones diffusivity is too strong; that of the dilute
hard sphere diffusivity is too weak. In both cases the
scaling with atomic volume is linear, whereas the MD
diffusivities have an affine variation (varying like a line
with a non-zero intercept). We must turn to other mod-
els.

B. Hard Sphere Liquid Model

Dense hard-sphere systems have been studied exten-
sively and have been used as a reference system for trans-
port properties, equation of state and other thermody-
namic properties. The system consists of particles that
do not interact except for elastic collisions that occur
when the centers of two of the particles are separated by
twice the hard sphere radius. Denoting the hard sphere
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radius by o, the system is characterized by the pack-
ing fraction £ = %7703/9 where 2 is the atomic vol-
ume. The hard-sphere equation of state calculated by
Alder and Wainwright [31] using molecular dynamics is
well described by the analytic form due to Carnahan and
Starling [33]

paQ  1+E+2 -8
keT — (1-¢)3

The diffusivity of this system is given by [30, 71]

Dy — L (TRT\TH (60N -9
T8\ M m&? ) §(1-¢/2)

The naive hard-sphere equation of state does not describe

our AlCu system well, due to the attractive forces be-

tween the atoms. This effect can be addressed by adding

a uniform, volume-dependent negative background po-
tential [30, 72], shifting the pressure:

pr =p+ f(Q). (59)

There have been various suggestions of simple forms for
this correction [30, 73]. We tried various simple forms
for f(€2) that involved sums of terms that go like inverse
fractional powers of 2, but the agreement with the MD
results was poor. Another generalization of the hard-
sphere form was suggested by Dymond [22], but this form
also does not agree well with our MD results.

To go beyond the simple forms we note that the hard
sphere system solidifies at a packing fraction of £, = 0.46,
so we can use f(§2) to enforce & = . on the Lindemann
melt curve. Specifically, using a Griineisen form for the
equation of state with the cold pressure p(T' = 0 K) =
po(2) [74], the expression for f(Q) is

(57)

£(9) = ~po(2) + g (6(&) ~ Br0/m) kT (60)

where ¢(£) = (1+£6+£2—¢3)/(1—£)? and the compression
is n = Qp/Q. The melt temperature T, is given by the
Lindemann expression [75]

T,, = Tmoe%(l—l/n)n?(%—a—1/3) (61)

where 1), is the melt temperature at ambient pressure,
a is a constant, and g is the Griineisen parameter at
ambient pressure. We have parameterized the Griineisen
equation of state for the AlCu system [74]. All of the pa-
rameters have been calculated independent of the diffu-
sivity simulations, so there are no free fitting parameters
in f().

The results for the diffusivity using this pressure cor-
rection are much better than the simple forms gave, but
the agreement with the MD results is less than ideal.
The case of pure aluminum is shown in Fig. 13. We have
taken the prefactor to be a fitting parameter, so the form
(58) of the self-diffusivity is modified to be
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FIG. 13: (Color online) Self-diffusivity (tracer diffusivity) of
Al pure molten Al at four temperatures: 1000 K, 2000 K,
3000 K and 4000 K. The points are values calculated with MD
using the Green-Kubo formula (8). The curves are fit to the
dense hard sphere formula (62). The dense hard sphere model
is an improvement over the dilute model shown in Fig. 12, but
it still is not as accurate as desired.

In the fit the prefactor 8 was found to be 0.062 instead of
0.0206, so larger than the usual number by a factor of 3
[30]. Had we been interested in a narrower range of pres-
sures near ambient, the fit would have been considerably
better. As is, the MD diffusivity on the isotherms has a
different functional dependence on the volume (or equiv-
alently density or pressure) than the hard-sphere form
(62). The MD results have less curvature as the volume
changes than implied by the hard-sphere model. The
qualitative trend of diffusivity increasing with tempera-
ture is described fairly well, but the quantitative level of
agreement, while sufficient for many applications, is not
entirely satisfactory.

We consider these results to be the best we can do in
the context of a hard-sphere model. It is not surpris-
ing that the hard-sphere approximation breaks down at
higher pressures and temperatures at which the classical
turning point for the potential has been reduced consider-
ably from its low-pressure, melt-temperature value. The
accuracy of the hard-sphere model is not sufficiently good
for our ultimate purposes in analyzing the MD simula-
tions of the Kelvin-Helmholtz instability [19] mentioned
in the introduction, so we are led to pursue other forms
that are empirical but motivated by the hard sphere
forms.

C. Empirical Model

The physics-based dilute gas and hard sphere models
have not provided a satisfactory description of the MD
results, so we consider an empirical form. We are moti-
vated here by the form of the dilute hard sphere diffu-
sivity, but modify the density dependence to be an affine
variation and the temperature dependence to have a dif-
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FIG. 14: (Color online) Self-diffusivity (tracer diffusivity) of
Al pure molten Al at four temperatures: 1000 K, 2000 K,
3000 K and 4000 K. The points are values calculated with MD
using the Green-Kubo formula (8). The curves are fit to the
generalized dilute hard sphere formula (63). This empirical
fit is an improvement over the other models.

ferent exponent than the dilute hard sphere (exponent

0.5) and the dilute Lennard-Jones (exponent 1.65-2.0).
We are thus motivated to describe the MD results with

a generalization of the dilute hard sphere diffusivity (55):

Daa- =do+dy (Q— Q) (T/Tp)" (63)

where dy, dq, ¢ and n are parameters to be fit. For con-
venience, we have introduced a reference temperature Ty
taken to be 2000 K. It is not an independent parameter.
The results for pure Al are better than the other models,
as shown in Fig. 14. This model achieves the level of
accuracy we want.

Based on the promising results with pure Al, we fit the
entire set of MD results using the generalized dilute hard
sphere formula (63), now taking the parameters dy, di,
Qo and n to be quadratic functions of the mole fraction
of copper, X. The values of the fit parameters are given
in Table II. The results of the fit are shown in Figs. 15
and 16. The fits are good, with RMS errors of 6% and
12%, for Al and Cu self-diffusivities, respectively. The
larger errors come from the super-cooled region.

Compared to the dilute hard sphere diffusivity (55),
there are several notable differences and similarities. In
both cases the diffusivity increases linearly with the vol-
ume per atom, but in the dilute hard sphere diffusivity it
is strictly proportional to Q o« 1/p, whereas in the gener-
alization (63) there is a non-zero intercept. They are both
power laws in the temperature, but for the dilute hard
sphere the diffusivity is proportional to VT, whereas in
the generalization it is almost linearly proportional to T
it goes like T™ with n ranging from 0.9967 to 1.12365 for
Al and 0.963559 to 1.03212 for Cu.

The MD self-diffusivities fit to the generalized hard
sphere diffusivity (63) with the parameters given in Ta-
ble II are our principal results. The self-diffusivities can
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TABLE II: Parameters for the generalized hard sphere diffusivity (63) fit to the MD self-diffusivities as a function of the mole

fraction of copper, X.

Species do (1079 m?/s) di (107° m?/s-A3)

Qo (AS) n

Al —5.574+ 1.810X + 1.549X7Z 2.742 — 0.6729X + 0.06810X7 8.329 — 0.1079X + 0.3641X2 0.9967 + 0.004351X + 0.1226 X
Cu  —6.021 +2.068X + 1.177X? 2.432 — 0.4977X + 0.06156 X2 7.725 + 0.1270X + 0.4212X? 0.9646 — 0.01898X + 0.0865X >

Al Sdf-Diffusivity (m?/s)

*
0.4 0.6 0.8 1
Copper Mole Fraction

FIG. 15: (Color online) Self-diffusivity (tracer diffusivity) of
Al as a function of copper fraction. The points are values
calculated with MD using the Green-Kubo formula (8). The
curves are fit to the generalized dilute hard sphere formula
(63). The upper band of four curves is at 3000 K; the middle
band of four curves is at 2000 K; the lower band of four curves
is at 1000 K. The circular points and solid curves represent
0 GPa; square points and dashed curves, 2 GPa; diamond
points and dot-dashed curves, 4 GPa; triangular points and
dotted curves, 10 GPa. The curves and points end at a mole
fraction of 0.9 since the Al self-diffusivity is not defined at the
next point (a pure Cu system).

then be combined using the Darken equation (32) to de-
termine the interdiffusivity, which is plotted in Fig. 17.
The comparison of the Maxwell-Stefan diffusivity with
the Darken diffusivity has shown that the contribution of
cross-correlations is a small reduction in the diffusivity.
We have made comparisons of the analytic model with
the interdiffusivity computed from the rate of interface
broadening in non-equilibrium MD simulations with an
initially sharp interface between regions of pure Al and
pure Cu [79]. The interdiffusivity from those simulations
was a few percent larger than the analytic model pre-
dicts; i.e., the opposite direction from the change due to
cross-correlations. Presumably, this increase in diffusiv-
ity results from activity corrections (the thermodynamic
factor which we have not calculated).

VI. VISCOSITY

While the principal focus of this work is on diffusiv-
ity, we have also calculated the viscosity of molten AlCu
mixtures. These calculations were done using the Green-

Cu Sdf-Diffusivity (m?/s)
N w S [6;]
X X X X
= = = =
(@] o, o, o,

, S
0 0.2 0.4 0.6 0.8 1
Copper Mole Fraction

FIG. 16: (Color online) Self-diffusivity (tracer diffusivity) of
Cu as a function of copper fraction, as in Fig. 15 except for
Cu instead of Al

7x10°

6x10°~ -

Al-Cu Interdiffusivity (m*/s)

| |
0 0.2 0.4 0.6 0.8 1
Copper Mole Fraction

FIG. 17: (Color online) AlCu interdiffusivity calculated in
MD from the self-diffusivity (63) and combined according to
the generalized Darken equation (44). The line color and style
follow the same pattern as in Fig. 15.

Kubo integral of the shear stress autocorrelation function
(9) for AlCu at temperatures ranging from 1000 K to
3000 K and pressures ranging from 0 to 25 GPa over a the
range of copper concentrations 0—1. The autocorrelation
function was calculated for each of the five independent
components of shear stress and averaged. Whereas the
velocity autocorrelation function was calculated on the
fly as the simulations were running, the shear stress au-
tocorrelation function was calculated by post-processing
a file containing the stress components written at each
time step. Finite size effects are much weaker for the vis-



0.005

Viscosity (Pa-s)

. . I . I . .
0 0.2 0.4 0.6 0.8 1
Copper Mole Fraction

FIG. 18: (Color online) The viscosity as a function of con-
centration across a range of pressures and temperature. The
solid curves show the fit to Eq. 67 and the points show the
results of the MD simulations.

cosity than diffusivity, and negligible for the 4000 atom
simulations.

The results are shown in Fig. 18. For example, the
values of the viscosity for the pure metals at 2000 K and
4 GPa are na; = 0.00707 poise and nc, = 0.0231 poise
(1 poise = 0.1 Pa-s). These correspond to kinematic
viscosities of va; = 2.86 x 10~7 m2/s and vc, = 2.95 X
1077 m?/s. The Schmidt number across the range of
temperatures and densities calculated varies from 3.7 to
over 2000 where

_ n
p.@u

The lower Schmidt numbers correspond to higher tem-
peratures and lower pressures, and the highest numbers
corresponding to supercooled liquids. There is some vari-
ation with concentration; e.g., at 2000 K and 4 GPa, the
Schmidt number ranges from 13.5 to 33.8 as the concen-
tration goes from 0 to 1.

The combination of the viscosity, diffusivity and ra-
dial distribution function results allow us to investigate
whether the Stokes-Einstein relation holds. Taking the
atomic radius R = %rgmax (half the distance at the first
peak of the radial distribution function), we have calcu-
lated the ratio

Se

(64)

kT

CSE
for pure Al and pure Cu. For spherical particles, csg = 4
for slip boundary conditions and 6 for no-slip. The re-
sults are shown in Fig. 65, where the behavior of the
fluid is nearly that of the Stokes-Einstein relation with
slip boundary conditions, except for those points in the
supercooled region. The average value of csg is 4.24,
slightly greater for aluminum than copper, and increas-
ing slightly with volume and temperature. In the super-
cooled region the value of cgg drops below 4.
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FIG. 19: (Color online) The Stokes-Einstein coefficient (65).
In the Stokes-Einstein relation this number would be 4 for slip
boundary conditions (dot-dash line) and 6 for no-slip (dashed
line).

TABLE III: Parameters for the analytic expression for viscos-
ity (67). The parameters are functions of the mole fraction of
copper, X, as indicated.

1.09784 — 0.422212X + 0.401049X?
0.312254 + 0.74701X + 0.334005X2 — 1.31185X3

Ry (A)
R: (A)

We have fit an analytic expression to the viscosity val-
ues calculated from MD. The form of the expression is
motivated by the Stokes-Einstein equation and the fact
that the interatomic separation does not vary strongly
over the range of temperatures and pressures we have
studied. The viscosity is fit to

kT

T % Dcu RO, T) (66)

R(Q,T) = (Q/Vew)"? [Roo + Ry log (2/Veuo)|67)

where Voyo = 11.7525A3, the atomic volume of fee cop-
per at zero temperature and pressure. The expression for
Dg, is given by Eq. (63) with the values in Table II. In
the Stokes-Einstein equation R(2, T') would be the radius
of the atom, in particular the copper atom since we are
using Dcy; however, we take it to be a fitting function
of the form shown that is intended to capture variations
in the atomic radius and cgg. The results of the best fit
are given in Table III.

There have been more experimental studies of the vis-
cosity of molten AlCu than of the diffusivity [12, 80—
82]. To the best of our knowledge all of the work has
been at ambient pressure. The most extensive viscos-
ity study of copper-aluminum alloys was undertaken by
Konstantinova et al. by measuring the viscous damping
of torsional oscillations of the molten alloys in a crucible
at high temperature [82]. They report kinematic vis-
cosity, v = n/p, over a range of concentrations at tem-
peratures of 600 °C to 1400 °C. At 700 °C (near our



1000 K results), they found that adding copper to alu-
minum increases the viscosity, in agreement with our re-
sults, but they found an anomaly at Al-25 at.% Cu (near
the stoichiometric composition CuAls) where there is a
peak in the viscosity. We do not see this peak, possi-
bly because the peak is narrow and we have not cal-
culated the viscosity at X = 0.25. A more interesting
explanation is that there could be a propensity to form
CuAl;z clusters in molten AlCu due to some special prop-
erty of the interatomic bonding that is not captured by
the potential. Earlier experiments had not found this
peak. The numerical values they report for kinematic
viscosity at 700 °C range from 4.99 x 10~ m?/s~! at
X =0.0t06.24x 107" m?/s~! at X = 0.4 with the peak
8.48x107" m?/s71 at X = 0.25. The MD values for kine-
matic viscosity at 1000 K range from 3.64 x 10~7 m? /s ™1
at X = 0.0 to 4.40 x 107" m?/s~! at X = 0.4. The MD
is systematically low compared to the experiment, but if
the comparison is made at the same homologous temper-
ature the values agree to ~ 10% apart from the peak due
to the MD giving a low value for the melt temperature.

There have also been some experimental measurements
of the viscosity of aluminum across a range of tempera-
tures by Kononenko et al. [12]. They fit their data with
the formula

n = 12.32 x 10~ 8 exp(1278/T)Mp (68)

with T in Kelvin, which gives n = 11 mP at T" = 933 K
[13]. This number is in reasonably good agreement with
the MD result of 9 mP at T' = 1000 K.

VII. THERMAL CONDUCTIVITY

The thermal conductivity has been calculated using
Eq. (10). There are no electrons in our classical MD,
so the electronic contribution to thermal conductivity
is neglected. The thermal conductivity for pure Al is
calculated to be 0.167 W/m-K at T = 1964 K and
p = 4.08 GPa, and for pure Cu it is calculated to be
0.192 W/m-K at T' = 2000 K and p = 4.23 GPa. Because
electronic contributions dominate the thermal conductiv-
ity of the real molten metals, it is difficult to compare
these numbers to experiment. For example, the ther-
mal conductivity of pure molten aluminum at ambient
pressure is reported to be in the range of 95-98 W/m-K
at T = 1000 K based on experiment [76]. The thermal
conductivity increases with temperature to 164 W/m-K
at T = 1900 K according to quantum MD calculations
[77]. This value is three orders of magnitude greater than
the ionic contribution we have calculated. The thermal
conductivity of copper is also dominated by electronic
contributions, as typical for molten metals. The exper-
imental results do not effectively constrain the value of
the ionic contribution.

In order to make any comparison to a physical system,
we need to consider a non-metallic liquid. As an example,
the thermal conductivity of water ranges from 0.554 to
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0.680 W/m-K as the temperature goes from 0 ° C to
200 ° C (it increases and then drops as the temperature
is increased [78]). These values are somewhat larger than
those we calculate for Al and Cu, but of the same order
of magnitude.

VIII. CONCLUSION

We have used classical molecular dynamics to inves-
tigate the pressure and temperature dependence of dif-
fusivity in molten AlCu mixtures over a broad range
of conditions. The self-diffusivities were calculated us-
ing the Green-Kubo formula based on velocity autocor-
relation function for the AlCu mixtures. Finite-size ef-
fects were addressed with a hydrodynamic correction for-
mula. Using the calculated self-diffusivities, we have as-
sessed whether dilute hard sphere and dilute Lennard-
Jones models apply to the molten mixture. Neither of
the two dilute gas diffusivities describes the diffusivity
in molten Al and Cu. We also considered a liquid hard-
sphere model, extended to include a better description
of the melt curve under pressure. This model is an im-
provement over the dilute gas models, but it too failed
to reproduce the MD values sufficiently well. We have
presented an empirical analytic form motivated by the
dilute hard sphere diffusivity. This new form gives good
agreement with the MD self-diffusivities across the range
of temperatures (1000-3000 K) and pressures (0-25 GPa)
simulated here. The agreement continues to be good up
to the most extreme temperature (100000+ K) simula-
tions.

The self-diffusivities have been combined using the
Darken approximation to arrive at a model of interdiffu-
sion across this range of thermodynamic conditions. The
results have been compared with Maxwell-Stefan diffusiv-
ities to account for cross-correlation effects, which were
found to make a small contribution to the diffusivity. The
viscosities have been calculated from the shear stress au-
tocorrelation function. An analytic form that reproduces
the MD viscosity values has also been derived based on
the Stokes-Einstein relation. The MD-derived transport
coefficients have been found to be in good agreement with
experimental data at ambient pressure. At higher pres-
sures experimental data are not available, and the mod-
els make valuable predictions for transport under these
extreme conditions. In the future it would be interest-
ing to understand whether the functional forms used in
the analytic models of self-diffusivity, interdiffusivity and
viscosity reported here are in any sense universal. They
may well apply to other molten metal alloys. It would be
interesting to see whether they do, and if so, whether the
form, currently empirical in nature, could be justified by
further theoretical developments.
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